
IEEE COMMUNICATIONS SURVEYS & TUTORIALS, ACCEPTED FOR PUBLICATION 1

Network Innovation using OpenFlow: A Survey
Adrian Lara, Anisha Kolasani, and Byrav Ramamurthy

Abstract—OpenFlow is currently the most commonly deployed
Software Defined Networking (SDN) technology. SDN consists of
decoupling the control and data planes of a network. A software-
based controller is responsible for managing the forwarding in-
formation of one or more switches; the hardware only handles the
forwarding of traffic according to the rules set by the controller.
OpenFlow is an SDN technology proposed to standardize the
way that a controller communicates with network devices in
an SDN architecture. It was proposed to enable researchers to
test new ideas in a production environment. OpenFlow provides
a specification to migrate the control logic from a switch into
the controller. It also defines a protocol for the communication
between the controller and the switches.

As discussed in this survey paper, OpenFlow-based archi-
tectures have specific capabilities that can be exploited by
researchers to experiment with new ideas and test novel ap-
plications. These capabilities include software-based traffic anal-
ysis, centralized control, dynamic updating of forwarding rules
and flow abstraction. OpenFlow-based applications have been
proposed to ease the configuration of a network, to simplify
network management and to add security features, to virtualize
networks and data centers and to deploy mobile systems. These
applications run on top of networking operating systems such as
Nox, Beacon, Maestro, Floodlight, Trema or Node.Flow. Larger
scale OpenFlow infrastructures have been deployed to allow the
research community to run experiments and test their applica-
tions in more realistic scenarios. Also, studies have measured
the performance of OpenFlow networks through modelling and
experimentation. We describe the challenges facing the large scale
deployment of OpenFlow-based networks and we discuss future
research directions of this technology.

Index Terms—Software Defined Networking, OpenFlow, Ca-
pabilities, Applications, Deployments, Networking Challenges.

I. INTRODUCTION

A RECENT approach to programmable networks is the
Software Defined Networking (SDN) architecture. SDN

consists of decoupling the control and data planes of a
network. It relies on the fact that the simplest function of
a switch is to forward packets according to a set of rules.
However, the rules followed by the switch to forward packets
are managed by a software-based controller 1. One motivation
of SDN is to perform network tasks that could not be done
without additional software for each of the switching elements.
Developed applications can control the switches by running
on top of a network operating system, which works as an

Manuscript received May 23, 2012; revised November 9, 2012, March 5,
2012, and May 9, 2013. This material is based upon work supported by the
National Science Foundation under Grant No. CNS-1040765.

The authors are with the Department of Computer Science and Engineering,
University of Nebraska-Lincoln, Lincoln, NE 68588-0115, USA (e-mail:
{alara,akolasan,byrav}@cse.unl.edu).

Digital Object Identifier 10.1109/SURV.2013.081313.00105
1We assume each OpenFlow network consists of a single logically cen-

tralized controller, which could be implemented by multiple controllers, in
practice.

intermediate layer between the switch and the application.
Another motivation is to move part of the complexity of the
network to the software-based controller instead of relying
only on the hardware network devices.

OpenFlow [1] was proposed to standardize the communi-
cation between the switches and the software-based controller
in an SDN architecture. The authors identify that it is difficult
for the networking research community to test new ideas in
current hardware. This happens because the source code of
the software running on the switches cannot be modified and
the network infrastructure has been “ossified” [1], as new
network ideas cannot be tested in realistic traffic settings. By
identifying common features in the flow tables of the Ethernet
switches, the authors provide a standardized protocol to con-
trol the flow table of a switch through software. OpenFlow
provides a means to control a switch without requiring the
vendors to expose the code of their devices.

OpenFlow was initially deployed in academic campus
networks [1]. Today, at least nine universities in the US
have deployed this technology [2]. The goal of OpenFlow
was to provide a platform that would allow researchers to
run experiments in production networks. However, industry
has also embraced SDN and OpenFlow as a strategy to
increase the functionality of the network while reducing costs
and hardware complexity. Table I shows a list of several
OpenFlow-compliant switches available in the market. The
Open Networking Foundation (ONF) [3] was founded in
2011 by Deutsche Telekom, Facebook, Google, Microsoft,
Verizon, and Yahoo to promote the implementation of SDN
and OpenFlow-based networks. Currently, ONF has more than
95 members including several major vendors.

OpenFlow networks have specific capabilities. For example,
it is possible to control multiple switches from a single
controller. It is also feasible to analyze traffic statistics using
software. Forwarding information can be updated dynamically
as well and different types of traffic can be abstracted and
managed as flows. These capabilities have been exploited by
the research community to experiment with innovative ideas
and propose new applications. Ease of configuration, network
management, security, availability, network and data center
virtualization and wireless applications are those that have
been investigated the most using OpenFlow. They have been
implemented in different environments, including virtual or
real hardware networks and simulations. Researchers have also
focused on evaluating the performance of OpenFlow networks
and on proposing methods to improve their performance.

OpenFlow offers great opportunities for network innovation
but it also faces challenges. The fact that the availability of
the network depends on a single controller at a given time,
creates scalability and availability problems. There are security

1553-877X/13/$31.00 c© 2013 IEEE

2 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, ACCEPTED FOR PUBLICATION

TABLE I
EXAMPLE OPENFLOW-COMPLIANT SWITCHES.

Switch Company Series
Arista Arista extensible modular operating system (EOS), Arista 7124FX application switch
Ciena Ciena Coredirector running firmware version 6.1.1
Cisco Cisco cat6k, catalyst 3750, 6500 series

Juniper Juniper MX-240, T-640
HP HP procurve series- 5400 zl, 8200 zl, 6200 yl, 3500 yl, 6600

NEC NEC IP8800
Pronto Pronto 3240, 3290
Toroki Toroki Lightswitch 4810
Dell Dell Z9000 and S4810

Quanta Quanta LB4G

Open vSwitch Software switch. Latest version: 1.10.0

concerns regarding the fact that all the network information is
contained in one single server. Compatibility issues must also
be taken into consideration. Questions remain about future
directions of OpenFlow research as well. We discuss the
extension of this technology to network-layer devices such
as IP routers, as well as the deployment of OpenFlow in wide
area networks (WAN).

This survey paper is the first comprehensive document, in
our opinion, to discuss the capabilities, applications, deploy-
ments and challenges of OpenFlow networks in local and
wide area environments. We also describe SDN and alternative
standards such as ForCES [4]. We explain how OpenFlow has
received major attention among SDN technologies but we also
point out the difference between SDN and OpenFlow.

We begin by giving a background of programmable net-
works and describing SDN in Section II. We explain the
OpenFlow specification in Section III. Then we present the
capabilities of OpenFlow networks in Section IV and we
survey how they have been exploited in different applications
in Section V. We describe deployments of OpenFlow-based
networks in Section VI. Next we discuss studies that have
evaluated the performance of OpenFlow in Section VII. Then
we discuss the challenges faced by OpenFlow in Section
VIII. We conclude by proposing future research directions in
Section IX.

II. BACKGROUND OF PROGRAMMABLE NETWORKS

In this section we present several contributions to pro-
grammable networks prior to SDN and OpenFlow. One of
the first approaches was SOFTNET [5], an experimental
multihop packet radio network that introduced the idea of
adding commands to the contents of each packet. The goal
was to modify a network node during operation time, using
commands written in the SOFTNET language. The motiva-
tion of the authors in creating this network was to enable
experiments with different network protocols. SOFTNET was
deployed as a proof of concept. There were no further large
scale deployments, but the idea behind it was the motivation
for Active Networks [6], [7].

The main idea of Active Networks (AN) was to allow
packets to contain programs that could be executed by the
network devices that they traversed. The concept of active
network is due to the fact that switches perform computations
on the data of the packets flowing through them and the users

can inject programs into the network [6]. A survey on AN
research is available in [8]. Although AN became an active
field of research, it ultimately failed at being widely used.
Recently, NetServ [9] was proposed as ActiveNetworks 2.0.
The authors argue that NetServ contains all the necessary
elements to be deployed.

SOFTNET and ActiveNetworks did not use software com-
ponents to control the network devices. The programmability
of the network was achieved by adding source code to the
payload of the packets. More recent approaches proposed
separating the control plane from the data plane by moving the
first one to general purpose servers. We describe SoftRouter
[10], ForCES [4] and finally we focus on OpenFlow [1]. They
are all based on software defined networking architectures,
where the network devices are controlled by software compo-
nents.

A. Software Defined Networking

The difference between SDN and the previous approaches
is that a software component running on a server or a CPU is
added to the architecture of the network. In SDN, the software
component is responsible for the control plane of the network.
This is why we say that SDN decouples the control and
data planes, as this distinction was not as clear in previous
approaches.

One important feature of SDN is its ability to provide
a network wide abstraction. Keller et al. [11] discuss the
idea of the “platform as a service” model for networking.
According to the authors, it is a common trend to decouple the
infrastructure management from the service management. In
this model, the underlying physical network and the topology
are hidden to the user. Instead, the abstraction presented to
the user is a single router. According to them, the customer
is mostly interested in being able to configure policies and
defining how packets are handled. We will see during the rest
of this survey that a large number of publications aim at hiding
the complexity of the network and providing an easier way to
configure a service. Using names instead of IP addresses, or
high level policies instead of access control configuration files
are examples of this abstraction.

Network operating system is a key concept in SDN. It
comes from the idea of abstracting the complexity of the
underlying network. Lazar [12] explains how an early ap-
proach to programmable networks introduced the term of

LARA et al.: NETWORK INNOVATION USING OPENFLOW: A SURVEY 3

kernel in terms of networking. The idea was precisely to
draw a parallel between the network operating system and
the typical operating system. In an operating system, the
abstraction includes the hardware components of the CPU.
In a network, the abstraction hides the topology and the
network devices. Therefore, the network operating system is
responsible for the abstraction provided by SDN to its users.

Another important advantage of SDN is that it enables
innovation and flexibility. If the control and data plane are
managed by a hardware network devices, there is little room
for innovating and experiment, as the software or firmware of
those devices cannot be easily modified. Instead, by having
access to a software component to manage the control plane,
many ideas can be explored.

B. Standardizing the communication between the control
plane and the data plane

SDN provides network-wide abstraction to the user and any
software-based technique can be used to manage the control
plane. However, we have not discussed how is the communica-
tion between the control and data plane standardized. Next we
describe how several researchers have proposed to standardize
this communication.

One early proposal is the IEEE P1520 Standards Initiative
for Programmable Networks Interfaces [13]. The authors iden-
tify the need of abstracting the complexity of the network to
the user as well as the necessity of a programming interface
to define the network. They also discuss the need of having a
protocol to access the network elements.

The SoftRouter architecture [10] allows dynamic binding
between the network element running the data plane and
the control element (software-based). This architecture was
proposed for network-layer devices that can be controlled by
standard purpose servers. The software component does not
need to be wired to the network device and a network element
can have more than one control element across the network.

ForCES (Forwarding and Control Element Separation) [4]
was created by the Internet Engineering Task Force (IETF).
ForCES was proposed to standardize the way that controlling
elements communicate with network elements. However, this
standard did not experience widespread adoption by the vendor
community. The Internet Research Task Force (IRTF) has
also undertaken efforts regarding SDN. The Software Defined
Networking Research Group (SDNRG) [14] aims to identify
SDN approaches that can be used in the nearby future, as
well as to identify future challenges. It also aims at providing
a forum to SDN researchers [15].

OpenFlow [1] came next and was based on the same
motivation: how to standardize the communication between
the control plane and the data plane. It describes how software
applications can program the flow table of different switches.
OpenFlow quickly became an active research topic and we
describe it in detail in the next section. Before, we briefly
compare ForCES and OpenFlow.

The IETF documented the differences between ForCES and
OpenFlow [16]. According to this document, both standards
decouple the control and data planes and they both standardize
the communication between the two planes. Regarding the

Fig. 1. OpenFlow components.

architecture of the network, one difference can be found be-
tween ForCES and OpenFlow. ForCES defines networking and
forwarding elements and how they can communicate with each
other. The architecture of the network remains unchanged.
On the other hand, OpenFlow modifies the architecture in
the sense that data plane elements become simple devices
that forward packets according to rules given by the control
element. ForCES allows multiple control and data elements
within the same network and the logic can be spread through
all the elements. OpenFlow aims at having a centralized
control plane.

Due to the emergence of OpenFlow as the SDN architecture
that has received major attention, we focus this survey on
network innovation using OpenFlow.

III. OPENFLOW SPECIFICATION

The OpenFlow specification describes an open protocol
to allow software applications to program the flow table of
different switches. An OpenFlow architecture consists of three
main components: an OpenFlow-compliant switch, a secure
channel and a controller, as shown in Fig 1. Switches use
flow tables to forward packets. A flow table is a list of flow
entries. Each entry has match fields, counters and instructions.
Incoming packets are compared with the match fields of each
entry and if there is a match, the packet is processed according
to the action contained by that entry. Counters are used to keep
statistics about packets. The packet can also be encapsulated
and sent to the controller.

The controller is a software program responsible for ma-
nipulating the switch’s flow table, using the OpenFlow pro-
tocol. The secure channel is the interface that connects the
controller to all switches. Through this channel, the controller
manages the switches, receives packets from the switches
and sends packets to the switches. An OpenFlow-compliant
switch must be capable of forwarding packets according to
the rules defined in the flow table. Figure 2 shows a high
level description of how a network device processes a packet.
First, the communication between the switch and the controller
is possible through flow table rules. Internally, a switch uses
Ternary Content Addressable Memory (TCAM) and Random
Access Memory (RAM) to process each packet.

4 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, ACCEPTED FOR PUBLICATION

Fig. 2. Elements of an OpenFlow-compliant switch.

TABLE II
MATCH FIELDS OF A FLOW TABLE ENTRY IN AN OPENFLOW 1.0.0

SWITCH.

Ingress Port
Ether src
Ether dst

Ether type
VLAN id

VLAN priority CoS
IP src
IP dst

IP Proto
IP ToS bits

TCP/UDP src port
TCP/UDP dst port

Different versions of the OpenFlow protocol specification
are available. The first version was the OpenFlow version
0.2.0 released in March, 2008. Versions 0.8.0 and 0.8.1 came
next in May, 2008. Version 0.8.2, released in October, 2008,
added the Echo Request and Echo Reply messages. Then,
version 0.8.9 was released in December, 2008. It included
IP netmasks, additional statistic information and several other
updates. OpenFlow 0.9 was released in July, 2009. Finally,
OpenFlow version 1.0, the most widely deployed version, was
released in December, 2009. Next, we focus on versions 1.0.0
[17], 1.1.0 [18], 1.2 [19] and 1.3.0 [20], as previous versions
are now deprecated. A detailed list of changes included in
every version is available in the OpenFlow 1.3.0 specification
document [20].

A. OpenFlow 1.0.0

Currently, the most widely used specification is the version
1.0.0. A switch supporting OpenFlow specification 1.0.0 uses
12 header fields present in the header and payload of the
Ethernet packets coming into the switch. Table II shows all
the header fields.

A packet can be matched to a particular flow entry in the
flow table by using one or more header fields of the packet.
A field in the flow table can have the value of ANY and it
will match all packets. If the forwarding table is implemented
using Ternary Content Addressable Memory (TCAM), ANY
can be implemented in the switch hardware using the third
masking state of the TCAM.

In Fig. 2 we showed the main elements of an OpenFlow
switch. Figure 3 shows the details of the data plane in an

TABLE III
MATCH FIELDS OF A FLOW TABLE ENTRY IN AN OPENFLOW 1.1.0

SWITCH.

Ingress port
Metadata
Ether src
Ether dst

Ether type
VLAN id

VLAN priority
MPLS label

MPLS EXP traffic class
IPv4 src
IPv4 dst

IPv4 proto / ARP opcode
IPv4 ToS bits

TCP/UDP/SCTP src port. ICMP Type
TCP/UDP/SCTP dst port. ICMP Code

OpenFlow 1.0.0 switch. In step 1, the Ethernet packet entering
the switch goes to a packet parsing system. In step 2, the
header fields are extracted and placed in a packet lookup
header, as they are used for matching purposes. In step 3, the
packet lookup header generated is sent to the packet matching
system. In step 4, the packet lookup header is compared to
the rules defined for each flow entry in the OpenFlow flow
table. Note that the flow entries in the table are present in
the descending order of priority. Therefore, the comparison of
the packet lookup header is done starting from the first flow
entry on the flow table. If a match is found, the actions in the
matched flow entry are performed on the packet (step 5B).
Otherwise, the first 200 bytes of the packet are sent to the
controller for processing (step 5A).

B. OpenFlow 1.1.0

In the OpenFlow 1.1.0 specification, a switch contains
several flow tables and a group table, instead of just one single
flow table, as in OpenFlow 1.0.0. Figure 4 shows the main
components of the OpenFlow 1.1.0 switch. The match fields
are also different, as shown in Table III. We have highlighted
in bold the added cells. The metadata field is used to pass
information between the tables as the packet traverses through
them. It is a register used to carry information between the
tables. The Multiprotocol Label Switching (MPLS) fields are
used to support MPLS tagging.

The processing of a packet entering the switch has changed
as there are multiple flow tables available in the switch. The
flow tables in the switch are linked to each other through a
process termed as pipeline processing.

Pipeline processing involves a set of flow tables linked
together to process the packet coming in. When the packet
first enters the switch, it is sent to the first table to look for the
flow entry to be matched. If there is a match, the packet gets
processed there and if there is another table that the particular
flow entry points to, the packet is then sent to that flow table.
This happens until a particular flow entry does not point to
any other flow table.

The flow entries in the flow tables can also point to the
group table. The group table is a special kind of table designed
to perform operations that are common across multiple flows.
This means that actions belonging to a set of flows are grouped

LARA et al.: NETWORK INNOVATION USING OPENFLOW: A SURVEY 5

Fig. 3. How a packet is processed and forwarded in an OpenFlow 1.0.0 switch.

Fig. 4. Components of an OpenFlow 1.1.0 switch. Source: [18].

together. Also, the set of flows is controlled to perform various
actions collectively under a single group. Complex forwarding
actions such as multipath and link aggregation are enabled
through the group table.

Finally, specification 1.1.0 introduces instructions instead
of actions. Previously, an action was associated to each flow
table entry. That action could be to forward the packet or
to drop it, as well as processing it normally as it would be
in a regular switch. Instructions are more complex and they
include modifying a packet, updating an action set or updating
the metadata.

C. OpenFlow 1.2

The OpenFlow specification version 1.2, was released in
December 2011 and it includes a few major features. First
of all, support to IPv6 addressing is added. Matching could

be done using the IPv6 source and destination addresses.
Another important feature supported is the possibility of
connecting a switch to multiple controllers concurrently. The
switch maintains connections with all the controllers and these
can communicate with each other to do hand overs. Having
multiple controllers provides faster recovery during failure and
it is also possible to achieve load balancing.

D. OpenFlow 1.3.0

The OpenFlow specification version 1.3 was released in
June 2012. Some of the improvements over version 1.2 are
listed next. It is possible to control the rate of packets
through per flow meters. Also, auxiliary connections between
the switch and the controller have been enabled. Another
improvement is that cookies can be added to the packets sent
from the switch to the controller and specific durations field
have been added to most statistics. A complete list of changes
is available in the specification’s document [20].

Table IV compares specifications 1.0.0, 1.1.0, 1.2 and 1.3.0.

E. Implementing applications using OpenFlow

In order to run applications on top of a single controller to
manipulate the flow table of a switch, a network operating
system is required (see Fig. 1). It acts as an intermediate
layer between the OpenFlow switch and the user application.
The network operating system communicates with the switch
using the OpenFlow protocol and notifies the application of
network events. Nox [21], Beacon [22] and Maestro [23] are
examples of network operating systems. Recently, Big Switch
released Floodlight [24], an open source Java based controller.
Foster et al. [25] proposed Frenetic, a network programming
language that simplifies the development of applications on
top of network operating systems. NEC proposed Trema [26]

6 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, ACCEPTED FOR PUBLICATION

TABLE IV
COMPARISON OF OPENFLOW SPECIFICATIONS.

Specification 1.0.0 1.1.0 1.2 1.3.0
Widely de-
ployed

Yes No No No

Flow table Single flow
table

Multiple
flow tables

Multiple
flow tables

Multiple
flow tables

MPLS
matching

No Yes Yes Yes, bottom
of stack bit
added

Group table No Yes Yes Yes, more
flexible
table miss
support

IPv6
support

No No Yes Yes, new
header field
added

Simultaneous
communi-
cation with
multiple
controllers

No No Yes Yes,
auxiliary
connections
enabled

to develop OpenFlow applications using Ruby and C. Finally,
DreamersLab developed Node.flow [27], a package to build
a JavaScript based flow controller using Node.js [28]. Table
V summarizes comparative data for the OpenFlow controllers
that we have mentioned.

There are at least four possibilities to implement OpenFlow-
based applications. First, an OpenFlow-compliant hardware
switch can be used. We have provided a list in Table I. It is
also possible to implement an OpenFlow-compliant software-
based switch using Open vSwitch [29], [30]. A third option
is to deploy virtual networks using Mininet [31], a virtual
environment developed by the Stanford University that can
be used to simulate multiple hosts in virtual network within
one single host machine. Finally, a NetFPGA platform can be
used. It consists of a PCI card that provides four 1G Ethernet
ports, static RAM and other network functionalities [32]. The
NetFPGA is also available with four 10G Ethernet ports.

Since physical and virtual switches can be used to deploy
an OpenFlow network, it is important to note some similarities
and differences between them. The advantage of a virtual
switch is definitely the cost. Open vSwitch can be downloaded
for free and it can be installed using commonly used virtual
machine tools. A virtual switch performs the operations shown
in Fig. 2 and Fig. 3 in software. Therefore, its main drawback
is the performance. Hardware based switches perform data
plane operations faster.

It is worth mentioning that debugging network applications
is not a common technique yet. However, a first prototype of a
debugger has recently been proposed by Handigol et al. [33].

Using OpenFlow, experimental and production traffic can
share the same OpenFlow switch. The action of a flow table
entry of an OpenFlow switch can be to send the packet to
the switch data path. On the other hand, a different flow entry
can be defined for experimental traffic. This way, experimental
traffic can be tested without interfering with the production
traffic [1]. In order to further enhance this, Sherwood et al.
proposed FlowVisor [36]. Using this technique, it is possible
for several single controllers to share the control of a switch.
A centralized OpenFlow- based controller “slices” the network

and acts as an intermediate layer between the switch and all
the OpenFlow controllers that manipulate the switch.

F. OpenFlow: a specification, a protocol or an architecture?

OpenFlow can be viewed as a specification when it is in
the context of an OpenFlow switch. An OpenFlow switch
is achieved by implementing the requirements specified in
the OpenFlow specification, in the device. For instance, in
the OpenFlow specification, it is required that the switch
has to support the flood action on the packets belonging to
a particular flow. The flood action floods the packet using
the normal pipeline of the switch [18]. Whether or not to
implement this feature is a decision made by the vendor, but
an OpenFlow switch must provide this functionality.

The OpenFlow protocol deals with defining the format
of the messages passed between the control plane and the
OpenFlow switch through the secure channel. The format of
the messages has to be understood as well as generated by
both the entities. This standard format of message passing
is defined in the OpenFlow protocol. In fact, the OpenFlow
protocol is part of the OpenFlow specification and it applies
to the OpenFlow control plane as well as to the OpenFlow
switch.

Finally, OpenFlow is viewed as architecture in the context
of an entire network. In an OpenFlow network, OpenFlow
switches are being controlled by one or more OpenFlow
controllers. Such a network can be viewed as supporting the
OpenFlow architecture.

It is important to keep in mind that the data plane imple-
mentation of the switch is vendor specific. As long as a switch
can communicate with an OpenFlow controller, the data plane
can be implemented differently by each vendor. Therefore,
the fact that two switches are OpenFlow-compliant does not
make them equal. Actually, not all switches implement all the
features of the OpenFlow specification. It is possible that an
OpenFlow-based application works using one switch but does
not work using a different switch.

G. OpenFlow and SDN

Since OpenFlow has become the most popular SDN tech-
nology, some consider these terms as synonyms. However,
it is important to note the difference between them. SDN
consists of decoupling the control plane from the data plane,
whereas OpenFlow describes how a software controller and
a switch should communicate in an SDN architecture. SDN
gives the user an abstraction of the network-wide state and
OpenFlow abstracts a network component. As an analogy, an
operating system provides a system-wide abstraction, just like
SDN provides a network-wide abstraction. On the other hand,
just like the operating system communicates with hardware
through drivers, OpenFlow can be considered a driver to
communicate a single controller and a network component.

As an SDN technology, OpenFlow networks have specific
capabilities that we describe next.

IV. CAPABILITIES OF OPENFLOW

OpenFlow architectures allow centralized control of the
network, software-based traffic analysis, dynamic updating

LARA et al.: NETWORK INNOVATION USING OPENFLOW: A SURVEY 7

TABLE V
OPENFLOW CONTROLLERS.

Controller Language Created by Comments
NOX C++ Nicira Networks NOX was donated to the research community in 2008. It has several branches at Stanford

University, such as classic NOX, new NOX and POX. New NOX is the version that will be
further developed. POX supports Python and it is used for educational or research applications
[34].

Beacon Java Stanford University Supports both event-based and threaded operation. Mostly used for research and experimentation
[22].

Maestro Java Rice University Licensed under licensed under LGPL v2.1. Not as common as other controllers such as NOX [35].
Floodlight Java Big Switch Networks Forked from Beacon and extended for enterprise usage. Apache-licensed [24].
Trema Ruby and C NEC Supports Linux applications only [26].
Node.Flow JavaScript DreamersLab Works on top of Node.js, a platform built on Chrome’s JavaScript runtime [27], [28].

of forwarding rules and flow abstraction. In this section we
describe these capabilities and we give examples that illustrate
how they can be exploited.

A. Centralized control of the network

One important capability of an OpenFlow network is that
the controller has network-wide knowledge of the system.
Several OpenFlow switches can be connected to a single
controller and it is then possible to make decisions in a
centralized manner. Instead of having several network devices
with a limited knowledge of the network, a single controller
can take decisions based on its knowledge of a broader part
of the network.

One example of this is Ethane [37], an architecture proposed
for managing the network of an enterprise. The key idea is to
create a centralized policy that is managed by the controller.
The switches become simple machines that forward and drop
packets according to the rules defined by the controller. Using
this architecture, it is possible to manage the network policies
using high-end names. Routing decisions are also considered
by the policy and finally, it becomes easier to bind a packet
to its origin.

Another example of this capability deals with link failure
recovery. In a traditional network, each switch has a limited
knowledge of the network. When a link fails, then routes
get adjusted at each switch until new routes are found. In
an OpenFlow network, a centralized controller can find new
paths in a much faster and easier way.

A comparison between the Path Computation Element
(PCE) [38] architecture and OpenFlow is worth being men-
tioned when discussing this capability. Path computation in
large and complex networks may require cooperation between
different domains. The PCE architecture was proposed to
address these challenges. A PCE is an entity that is capable of
computing a network path or route based on a network graph
[38]. A PCE architecture is not fully centralized. However, a
cooperation between different entities does exist. Nevertheless,
it can also occur that an entity does not have visibility over
another element. Therefore, the knowledge of the network is
not full. In OpenFlow-based networks, the controller usually
has a broader knowledge of the network and therefore the
control of the network is centralized. On the other hand,
OpenFlow controllers do not cooperate together as it happens
in a PCE architecture. Giorgetti et al. [39] propose OpenFlow
and PCE architectures to control wavelength switched optical
networks.

To illustrate the difference between PCE and OpenFlow ar-
chitectures, we describe how the OSCARS [40] (On-Demand
Secure Circuits and Advance Reservation System) project
provides a PCE module [41]. Through this module, researchers
can deploy PCE elements in the network in a distributed
manner. Therefore, it is possible to perform path computation
without using a single centralized point. If we compare this to
an OpenFlow testbed, we will find that researchers deploy the
code on top of an OpenFlow controller and all computations
are performed from there.

Another centralized approach towards network management
is the Bandwidth Broker (BB) architecture [42]. A BB consists
of one or more servers that perform network functionalities
such as quality of service (QoS), policy enforcement or
admission control. The data plane communicates with the BB
modules. The advantage of this architecture is that part of the
complexity is assumed by the BB and minimal configuration
is required in the network device. This architecture can be
used at the edge of a network to control bandwidth allocation.

B. Software-based traffic analysis

Software-based traffic analysis is a powerful capability of
OpenFlow networks. This capability greatly enables innova-
tion, as it is possible to improve the capabilities of a switch
using any software-based technique. Traffic analysis can be
performed in real time using machine learning algorithms,
databases and any other software tool.

As an example, a distributed denial of service attack (DDoS)
detection method is proposed in [43] and it heavily relies
in traffic analysis. The method is based on retrieving traffic
data on periodic intervals and using self organizing maps to
classify traffic as normal or malicious. Because the traffic
analysis is done by software, there are more possibilities of
using advanced features to perform the analysis, such as neural
networks.

Another application of this capability is source address
validation. Yao et al. [44] proposed checking the source
address of each new flow. When a switch forwards a packet to
the controller because it does not match any rule in the flow
table, the controller can validate whether or not that source
address corresponds to a valid flow.

C. Dynamic updating of forwarding rules

Another capability of OpenFlow networks is that they allow
dynamic updates of forwarding rules. All kinds of changes

8 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, ACCEPTED FOR PUBLICATION

in the topology can be performed in real time, based on the
decisions taken by a software controller. No human interaction
is required. This is possible because the controller can modify
the flow table entries at any time.

In [45], the controller is notified of a link failure and it
modifies the entries of the flow table to re-route the traffic.
By doing this, the network can react to link failures without
requiring any action by the network administrator. The authors
also suggest that the controller can automatically allocate more
or less bandwidth according to the traffic load, to save energy.

Another application of this capability is load balancing.
The controller can assess the load of several servers and
dynamically change the forwarding rules to make sure that
the load is properly balanced. Handigol et al. [46] proposed
Plug-n-Serve, a load balancer that can dynamically add new
servers to the cluster without interrupting the service.

D. Flow abstraction

Finally, networks using OpenFlow abstract all traffic as
flows. For each flow there is an entry in the flow table. For
each entry, different rules can be defined. One flow could be all
traffic using one specific TCP protocol. Another could be all
packets travelling between two defined MAC addresses or all
data with one IP address destination. One could also define
a non standard header to identify traffic of a specific entry.
This allows managing different kinds of flows using the same
control element.

Merging packet and circuit networks in a single infras-
tructure has been studied by several authors and it relies on
this capability. Packet and circuit networks are treated as two
different flows but they can be managed by the same controller.

In the next section we survey how the capabilities described
above have been exploited in OpenFlow-based applications.

V. OPENFLOW-BASED APPLICATIONS

In this section we survey studies that use OpenFlow for
different kinds of applications. Ease of configuration, network
management, security and availability are examples of these
applications. OpenFlow has also been used to achieve network
and data center virtualization, as we describe next.

A. Ease of configuration

OpenFlow-based applications can simplify the configuration
of the network. Common approaches include access control
lists and configuration files whose administration is time
consuming and can lead to errors. By using SDN, it is possible
to use software to take care of this. Yamasaki et al. [52]
proposed using OpenFlow to manage the VLANs of a campus
network. They describe how the number of VLAN ids is
limited and how the configuration tasks are time consuming.
In their approach, the controller analyzes incoming traffic and
detects if the communication should be allowed or not, based
on virtual group ids (GID) instead of VLANs. Using this
approach, the number of VLANs limitation is overcome and
the configuration of the network is simplified.

Several authors have addressed how to ensure consistent
network updates using SDN. Reitblatt et al. [53] describe

how to provide abstract operations that allow updating rules
across the entire network in one fell swoop. In another paper,
Reitblatt et al. [54] describe how updating network policies
can lead to inconsistencies when packets are processed by
both the old and the new policy. The authors note that achiev-
ing per-packet and per-flow consistency is critical to avoid
inconsistencies and they describe techniques to implement
both features. Also, Katta et al. [55] introduce algorithms that
trade time against TCAM space in order to do the updates in
an efficient manner. McGeer [56] proposes a network update
protocol as well. His method uses boolean formulas and it
ensures that flows are treated consistently. As an example,
if a ruleset 1 is updated to a ruleset 2, the protocol ensures
that the packets that were being processed using ruleset 1 are
conserved, then the update takes place in all routers and finally
the packets are released and processed by ruleset 2. Finally,
Ghorbani et al. [57] propose a method to migrate virtual
machines in a consistent manner and respecting bandwidth
requirements. The authors have implemented an algorithm that
outputs the order in which virtual machines must be migrated
in order to ensure that no inconsistencies occur.

As we described earlier, Casado et al. [37] proposed Ethane,
an SDN architecture explicitly designed to simplify the man-
agement of the network in an enterprise. Ethane relies on
the idea that the network policy should be known by the
controller and enforced in all switches. The main requirement
is that all communications between two hosts require explicit
permission. Instead of creating configuration files for all the
switches in the network, these devices are kept simple and the
rules are managed by the controller. An implementation of an
Ethane switch in hardware is described in [58].

Some common points can be extracted from these studies.
We mentioned in Section II that a user is interested in defining
policies and configuring how their packets are forwarded. Here
we notice that the studies by Reitblatt et al. [54] and by
Casado et al. [37] focus on simplifying the creation of policies
and hiding how these policies are implemented underneath.
The study by Yamasaki et al. [52] provides another way of
creating VLANs in such a way that the user must not deal
with troublesome configuration files.

B. Network management

Deploying OpenFlow-based networks has also motivated
research on OpenFlow management infrastructures. These
studies aim at simplifying network management through
OpenFlow. Mattos et al. [59] implemented a user friendly
interface that allows the user to manage the network. Their
implementation is based on NOX. Several applications are
developed on top of that network operating system and a web
based interface is provided to the user. Also, a multiagent
system is capable of autonomously perform management.

Gibb et al. [60] propose an architecture in which network
appliances (middleboxes) are not located at points of the
topology that are traversed by plenty of traffic. They argue
that these chokepoints are not suitable for middleboxes, as
performance and correctness issues arise. Instead, they suggest
using processing units in waypoints of the network. An
OpenFlow switch, located at the chokepoint, is capable of

LARA et al.: NETWORK INNOVATION USING OPENFLOW: A SURVEY 9

TABLE VI
COMPARISON OF SECURITY APPLICATIONS USING OPENFLOW.

Publication Problem approached Description of the solution Implementation SDN capabilities exploited
Suh et al. (CONA) [47] DDoS attack detection Frequency and pattern of re-

quests are analyzed to de-
tect DDoS attacks.

NetFPGA-OpenFlow
switches

Traffic analysis and dy-
namic rules updating

Braga et al. [43] DDoS attack detection Statistic information in the
flow table is used to classify
traffic as normal or mali-
cious.

Simulation of a NOX based
network.

Traffic analysis and central-
ized control.

Chu et al. [48] DDoS attack detection Locator/ID separation pro-
tocol (LISP) is used to iden-
tify authorized and mali-
cious sources.

Small network with one
controller and two Open-
Flow switches. Specialized
hardware simulates DDoS
attacks.

Traffic analysis and dy-
namic rules updating

Liu et al. [49] Covert channel protection The controller uses a sec-
ond software node that fil-
ters authorized communica-
tion.

Simulation of a network
using a virtual OpenFlow
switch.

Dynamic rules updating and
centralized control.

Yao et al. (VAVE) [44] Source address validation The controller analyzes traf-
fic and calculates the flow
path to decide if the source
address is valid.

Simulation of a network
using a virtual OpenFlow
switch.

Traffic analysis and dy-
namic rules updating.

Jafarian et al. [50] Moving target defense The controller periodically
assigns different virtual IP
addresses to hosts to hide
the real IP addresses to an
intruder.

Simulation using Mininet. Centralized control,
dynamic rules updating.

Gutz et al. [51] Traffic isolation Network slices are defined
through a programming
language instead of using
network-level techniques.

A tool was developed to test
whether traffic isolation was
correct

Centralized control

routing to the processing units only the traffic that needs to
be processed by the middlebox. By doing this, less traffic
traverses the network appliances and a much simpler hardware
is used at the chokepoint of the network.

Defining and implementing network policies has also been
addressed using OpenFlow. Voellmy et al. [61] propose Pro-
cera, a controller architecture and a high level network control
language that can be used to reactively define network policies.
Regarding implementation, Fergusson et al. [62] propose an
OpenFlow-based method to perform policies delegation in
SDN networks. Their idea consists of creating delegation
trees, where each path can be managed by different network
administrators. The authors create hierarchical flow tables
that can be used to delegate policies. An incoming packet
is matched to these policies and processed accordingly.

Finally, an innovative way of managing IP multicast in
overlay networks was proposed by Nakagawa et al. [63].
The authors propose using OpenFlow instead of a more com-
mon approach such as Internet Group Management Protocol
(IGMP). Two important contribution of their approach are
eliminating periodical join/leave messages and making use of
multipath in the layer-2 network.

Outsourcing network functionality is another interesting
innovation to simplify the network management. Gibb et
al. [64] propose Jingling, an architecture that allows adding
functionality to a network in an outsourced manner. Feature
providers can be located anywhere outside the network. Poli-
cies defined how feature providers must be used and a network
controller maps the policies to the feature providers. Following
the idea of having services outside the network, the idea of
Networking-as-a-Service (NaaS) has emerged. Raghavendra et
al. [65] propose using OpenFlow to manage networks in such

a way that they are ready to user services provided as NaaS.
In this section, we notice that the common trend is to

exploit how OpenFlow can dynamically update the forwarding
rules. Having a network-aware controller allows the network
manager to dynamically forward traffic according to specific
needs. Once again, we also note how several studies simplify
the creation of network policies.

C. Security

OpenFlow has also been used to create applications that pro-
vide security to the network. Table VI compares the problems
approached, the solutions proposed and the infrastructures
used to test the implementations.

Methods to detect DDoS using OpenFlow have been pro-
posed recently [47], [43], [48]. Suh et al. [47] proposed a
content oriented networking architecture. This approach relies
on creating flows based on the identity of the client and the
type of content requested. A DDoS attack is detected when
the server that provides a given content type receives more
requests than expected, based on a pre-defined range. Chu
et al. [48] proposed a method that analyzes the frequency of
traffic. If a threshold is exceeded, then the controller considers
that a DDoS attack is happening and it starts dropping packets.
Finally, as we mentioned earlier, Braga et al. [43] proposed a
method that gathers traffic information and uses self organiz-
ing maps to classify the traffic as normal or malicious.

Liu et al. [49] proposed an SDN architecture where nodes
with different levels of security clearance can exchange com-
munication. The OpenFlow controller sets up the rules so
that traffic is authorized only when the requester has a higher
security clearance than the receiver.

10 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, ACCEPTED FOR PUBLICATION

Yao et al. proposed VAVE [44], an OpenFlow-based ar-
chitecture designed to validate the address of all incoming
packets. When the switch receives a packet that does not match
any rule, the packet is sent to the controller and the source
address is validated. If spoofing is detected, then a rule is
created to stop that traffic.

Jafarian et al. [50] propose a moving target defense (MTD)
technique using OpenFlow. The proposed defense assigns
virtual IP addresses to hosts and the controller maps virtual
addresses to physical addresses. This is performed once and
again, in an unpredictable way such that the attacker cannot
identify which host is behind each IP address.

Finally, traffic isolation has been studied by Gutz et al.
[51]. The authors argue that current traffic isolation techniques
such as VLANs increase the complexity of the network
configuration. They propose creating network slices at a higher
level. Under their approach, a network programming language
should be able to create this slices to isolate traffic. This way,
slices are defined at a high level and then forwarding rules are
automatically added to the switches.

When it comes to security, we notice how the researchers
heavily rely on the ability of processing data in the controller.
In all these publications, some kind of intelligence is added
to the switch through the controller. For example, Braga
et al. [43] use self organizing maps, which could not be
implemented on regular switches. Also, Yao et al. [44] exploit
the idea that, since a given packet must be analyzed by the
controller, then a more rigorous address validation can be
performed. Once again, in the study by Gutz et al. [51], we
note how more capability is given to a higher layer. In this
case, it is about isolating network traffic using a programming
language. This is a common trend in SDN: how to allow a
user to perform network tasks without needing full access to
the network topology.

D. Availability

OpenFlow-based applications have focused on providing
availability to the network as well, including load balancing
and fault tolerance. Load balancing is a commonly used tech-
nique to distribute a working load between two or more nodes.
This improves the availability of a network since the system
can support one or several single failures. Fault tolerance refers
to the property of a system to continue operating when a
failure occurs.

1) Load balancing: Handigol et al. proposed Plug-n-Serve
[46], a load balancer for unstructured networks that attempts
to reduce the response time by taking into consideration the
load of the servers and the congestion of the network. The
proposed method displays the load of the network in real time.
The software running on the controller takes the load of the
network and servers into consideration and decides where to
direct the traffic. Using this solution, it is also possible to add
new servers to the cluster and the software will dynamically
detect them and add them to the load balancing. An improved
version of Plug-n-Serve, Aster*x was also proposed in [74].
Aster*x runs on the Global Environment for Network Inno-
vations (GENI) infrastructure and it is used at a much larger
scale than Plug-n-Serve.

Wang et al. [75] argue that Plug-n-Serve works by reactively
creating forwarding rules for incoming requests. They pro-
posed a proactive approach, based on wild cards. They divide
the entire client address space into different rules. These rules
forward the traffic to specific servers. The controller knows
what percentage of traffic should be handled by each server
and it creates the rules so that the expected loads are respected.
We can see that the approach by Wang proactively creates
the rules to make sure that each server handles the required
percentage of connections. This requires a smaller number of
rules than the approach used by Plug-n-Serve, which improves
its scalability. On the other hand, Plug-n-Serve takes into
consideration the load of the server and the network and does
not require a specific percentage of traffic for each server and it
is more flexible, since each client can be handled individually.

2) Fault tolerance: Sharma et al. [76] and Staessens et
al. [45] have explored fault tolerance using OpenFlow. In
[76], the authors describe how failure recovery can be im-
plemented using OpenFlow. They explain how the controller
can dynamically change the routing rules when a failure
is detected in a link. In [45], experiments are designed to
analyze if an OpenFlow based network can recover from a link
failure. The authors argue that carrier grade networks must be
able to recover in less than 50 ms. The experiments show
that restoration is successful but that the dependency on the
centralized controller makes the goal of 50 ms challenging to
achieve.

Another way of ensuring availability is to verify that there
are no configuration errors that might cause a disruption.
Khurshid et al. [77] propose VeriFlow to check network
invariants in real time. This includes loops in the routing
tables, unavailable paths and other problems that can be
identified before deploying the network. Moreover, the authors
are interested in doing this in real time. VeriFlow sits between
the controller and the switch and monitors the communication
between these two parts. By modelling the network as a graph,
network invariants are checked in the order of hundreds of
microseconds.

Porras et al. [78] propose a policy enforcement mechanism
that is also based in analyzing the forwarding rules that are
added to or deleted from the flow table. The author introduce
FortNOX and they aim at performing role based authentication
and security constraint enforcement. The application checks
for conflicting rules after every update of the flow table. When
two rules incur in a contradiction, then the rule defined by the
user with the highest security clearance is kept.

These studies have some common trends. First, the ca-
pability of dynamically updating forwarding rules is heavily
exploited. Load balancing is performed based on the ability of
the controller to alter the forwarding rules. The fact that the
controller is network-aware is also helpful. In the studies by
Sharma [76] and by Staessens [45], finding new paths after a
failure occurred is easily done in a centralized manner, since
the topology is known. Traditionally, this kind of recovery is
done by decisions taken by switches that are not network-
aware and a centralized method simplifies this task.

LARA et al.: NETWORK INNOVATION USING OPENFLOW: A SURVEY 11

TABLE VII
COMPARISON OF NETWORK VIRTUALIZATION APPLICATIONS USING OPENFLOW.

Publication Problem approached Description of the solution Implementation
Simeonidou et al. [66] Packet and circuit network integra-

tion
An OpenFlow controller is inte-
grated with a GMPLS controller

No implementation provided

Das et al. [67] Packet and circuit network integra-
tion

An OpenFlow controller is inte-
grated with a GMPLS controller

Prototype network using NetFPGA
switches that emulates a WAN

Das et al. [68] Packet and circuit network integra-
tion

An OpenFlow controller is inte-
grated with a GMPLS controller

Fully functional hardware based
network. Used as a proof of concept
for a demonstration.

Das et al. [69] Application aware aggregation and
traffic engineering in a circuit-
packet network

The capabilities of SDN are ex-
ploited in a circuit-packet network
to provide application aware rout-
ing.

Hardware based network used to
emulate a WAN

Das et al. [70] Complexity of IP/MPLS control
plane

The MPLS data plane is controlled
by OpenFlow instead of the tradi-
tional IP/MPLS control plane.

Open vSwitch and Mininet are used
to emulate a WAN

Ferkouss et al. [71] Flexibility of MPLS nodes An OpenFlow controller is used to
dynamically modify MPLS nodes

Hardware implementation that ex-
ploits the pipelining of OpenFlow
1.1.0.

Kempf et al. [72] Supporting MPLS forwarding in
OpenFlow 1.0.0

Additional match fields are added
to the flow entry format and MPLS
actions are added to the OpenFlow
1.0 specification

NetFPGA-OpenFlow switches

Sharafat et al. [73] MPLS implementation complexity The centralized control capability is
exploited to implement MPLS-TE
and MPLS-VPN in a simpler way
than the traditional approach

Physical and virtual switches sup-
porting the MPLS section of Open-
Flow 1.1 and simulation using
Mininet

E. Network virtualization using MPLS and GMPLS

Network virtualization is another research area where Open-
Flow has been applied. Circuit and packet switched networks
are typically managed using separate infrastructure and this
is costly. Several authors have proposed OpenFlow-based
architectures that could be used to manage both packet and
optical circuit networks using the same infrastructure [66],
[67], [68], [69], [79]. Azodolmolky et al. [79] provide a
good explanation on how OpenFlow and GMPLS can be used
together as an integrated control plane. This approach relies
on the fact that packet and optical circuit networks can be
managed as different flows in the switch’s flow table. In order
to manage both flows, a GMPLS controller is integrated to
the standard OpenFlow controller. The OpenFlow controller
is responsible for managing the flow table. However, when
a flow corresponds to traffic over an optical circuit, then the
GMPLS controller takes care of the routing decisions and a
flow entry containing the forwarding action and the required
wavelength is added to the flow table. This way, switches can
handle two kind of flows, one for circuit networks and one
for packet networks.

MPLS and GMPLS have also been used in other applica-
tions. Kempf et al. [72] add an extension to OpenFlow 1.0
that allows a switch to forward MPLS on the data plane.
Das et al. [70] proposed using MPLS in the data plane
but OpenFlow in the control plane instead of the traditional
IP/MPLS control plane. El Ferkouss et al. [71] argue that
OpenFlow can be used to “deossify” an MPLS architecture.
They show how an MPLS node can play multiple roles for
different MPLS domains, which provides greater flexibility
to the nodes. Sharafat et al. [73] implement MPLS-TE and
MPLS-VPN using an OpenFlow controller to show that cen-
tralized control makes the implementation easier. Table VII
compares the different applications that use OpenFlow to

virtualize networks using MPLS and GMPLS. Centralized
control, dynamic rules updating and flow abstraction are the
most commonly exploited capabilities for these applications.

The studies that we have mentioned exploit the circuit
switching capability of GMPLS and not the VLAN-switching
capability. In summary, the research direction regarding GM-
PLS and OpenFlow is to simplify the creation of end-to-
end circuits. Das et al. [80] discuss why GMPLS has not
been as successful as expected in the control plane and how
combining it with software defined networking is a more
suitable approach.

F. Data center virtualization

Similar to network virtualization, virtualizing data centers
using OpenFlow has also been an active research area. SDN
architectures have been considered to meet the requirements
of a data center: efficiency, agility, scalability and simplicity
[81]. Al-Fares et al. [82] proposed Hedera, a dynamic flow
scheduling method for data center networks. They proposed
an OpenFlow-based architecture that can dynamically modify
the flows according to the traffic load. The authors argue that
this approach achieves a larger network utilization. Rotsos
et al. [83] also use OpenFlow to dynamically virtualize the
network. They argue that VLANs and MPLS can be used to
create virtual networks in a static way. However, the network
utilization can be optimised if the network virtualization is
performed according to the traffic load.

G. Wide area network applications

A majority of studies have deployed their experiments
in local area networks. However, some studies address the
possibility of deploying OpenFlow in a wide area network
(WAN). First, in [70] the authors show that OpenFlow could
be deployed in a WAN by emulating this kind of network.

12 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, ACCEPTED FOR PUBLICATION

Studies such as [67], [69] show that OpenFlow could be used
to control this type of network.

Bennesby et al. [84] propose an inter-domain routing so-
lution using an OpenFlow architecture running on a NOX
controller. The authors explain how the different autonomous
systems (or domains) interact with each other through the
Internet. They propose a routing scheme based on OpenFlow
that would allow autonomous systems to communicate with
each other.

H. Wireless applications

OpenRoads [85] was designed to enable research in mobile
networks. It can be considered as the wireless version of
OpenFlow. In this architecture, a flow visor [36] (as introduced
in Section III) controls network devices through the SNMP
protocol. Several controllers can be deployed on top of the
flow visor. Details of the OpenRoads architecture are available
in [86]. A deployment of OpenRoads in the campus of
Stanford University is described in [87]. Other works using
OpenRoads include [88], [89].

There are also other wireless applications that do not
use OpenRoads. Huang et al. [90] proposed PhoneNet, an
infrastructure which supports group communication among
phones. A group of users can interact using their phones after
a multicast address is created so that it can be accessed by all
the members in the group.

Bansal et al. [91] propose OpenRadio, a design for a
programmable wireless network dataplane to automatize how
devices’ software is updated. They argue that software updates
have become more frequent (there used to be a release
every few years and now updates are available monthly).
OpenRadio aims to providing an infrastructure to update
base stations of wireless systems via software. Without this
approach, devices must be collected so that the software can
be manually updated. This frequent hardware collection is
expensive and network software updates are more adequate.
As an example, they describe that in an urban area, there could
be one device per block to provide adequate coverage. In this
scenario, collecting the sensors every time an update must be
installed would be prohibitively expensive. OpenRadio enables
updating the devices without having to physically collect them.

Regarding wireless enterprise local area networks (WLAN),
Suresh et al. [92] propose Odin, a prototype SDN architecture
that simplifies client management in a WLAN. The network is
given programmability and light virtual access points are in-
troduced. These access points are managed from an OpenFlow
controller.

I. Other applications

OpenFlow has also been used in other areas not listed above,
such as routing and network congestion control. Liu et al.
[93] proposed a method to control congestion using queuing
systems and a centrally controlled network. Yap et al. [94] also
consider network congestion, as well as bandwidth reservation
and multicast. Nascimento et al. [95] proposed QuaqFlow, a
Quagga implementation using OpenFlow. Quagga is a routing
package that provides implementation of TCP/IP routing pro-
tocols. RouteFlow [96], an architecture that provides routing

as a service, was proposed as an extended work of Quagga.
Rothenberg et al. [97] proposed an OpenFlow-based approach
that allows the introduction of advanced routing systems. This
study was built by extending the earlier RouteFlow [96].
Egilmez et al. [98] proposed an architecture to provide routing
for video streaming.

In the next section, we focus on larger-scale deployments
rather than the applications themselves.

VI. OPENFLOW DEPLOYMENTS

Deployments of OpenFlow-based networks mainly include
campus networks and testbeds, as well as deployments under-
taken by the industry.

Stanford University has deployed an OpenFlow-based net-
work in one of its buildings. The network includes production,
experimental and demonstration traffic. It connects approxi-
mately fifty switches and around 25 users, both wired and
wireless. Details of the topology can be found at [99]. Other
universities have also deployed OpenFlow-based networks.
The full list is available at [2] and it includes Clemson Uni-
versity [100], Georgia Tech [101], Indiana University [102],
Kansas State University [103], Rutgers University [104], Uni-
versity of Washington [105], University of Wisconsin [106]
and Princeton University [2].

At a larger scale, the Global Environment for Network
Innovations (GENI) [107] provides a research infrastructure
where OpenFlow experiments can be conducted. The Open-
Flow core of this network consists of several interconnected
OpenFlow-compliant switches on both Internet2 [108] and
National LambdaRail (NLR) [109] networks. The connection
to the NLR network is achieved through HP6600 switches
deployed at Sunnyvale, Seattle, Denver, Chicago, and At-
lanta and through NetFPGA switches in Sunnyvale, Houston,
Chicago, and New York [110]. Internet2 has OpenFlow-
compliant switches installed in Los Angeles, New York,
Washington DC, Atlanta [111]. Campus networks can connect
to the GENI deployment to run larger scale experiments.

As of October 2012, Internet2 provides a nationwide 100G
software defined network [113]. The network is currently
operational for member institutions of Internet2. The deploy-
ment includes routers of the Brocade MLX family and related
Brocade NetIron platforms, as well as Juniper Networks MX
Series routers [114]. It also provides a 100G Ethernet network
and a 8.8 Terabit per seconds optical network. Internet2 will
operate the U.S UCAN (United States Unified Community
Anchor Network) program [112]. Their goal is to use this
software defined network to provide a platform to interconnect
research, educational and health care institutions. Figure 5
shows a draft of the expected deployment.

The Energy Science Network (ESnet) [115] is funded by the
Department of Energy (DOE) and operated at the Lawrence
Berkeley National Laboratory. ESnet has also deployed an
OpenFlow testbed, originally funded by the Advanced Net-
working Initiative (ANI) [116]. ANI was an investment in
next-generation technology infrastructure to speed of scien-
tific discovery. ESnet operates two testbeds: the Long Island
Metropolitan Area Network (LIMAN) and the 100G. The
LIMAN is a 10G testbed. It includes four NEC IP8800
OpenFlow switches [117]. The OpenFlow network operates on

LARA et al.: NETWORK INNOVATION USING OPENFLOW: A SURVEY 13

Fig. 5. Draft of the planned U.S. UCAN network using the Internet2 100G deployment. (Source: [112]).

Fig. 6. Topology of the ANI OpenFlow testbed.

the VLAN 101. There are two ways of running an experiment
on the testbed. One option is to connect the controller directly
to the OpenFlow switches through the management VLAN.
The second option is to connect to the flow visor controller
and getting a partition of the network to run the experiments.
The first option requires the researches to reserve the testbed
beforehand. The second option does not require any reserva-
tion of resources. The flow visor configuration file has to be
sent to the administrator to get connected. The 100G testbed
runs between the DOE Supercomputer centers in Argonne
National Lab (Chicago) and NERSC (California) through a
100G dedicated network [118]. To deploy experiments using
the 100G testbed, researchers must follow a proposal process
that includes writing a 1-2 page proposal and demonstrating
that the experiment is working in a small environment [119].
Figure 6 shows the topology of the ANI OpenFlow testbed.

Another smaller deployment is the Open Access Research
Testbed for Next-Generation Wireless Networks (ORBIT)
testbed [120], which is being developed and operated by
WINLAB, Rutgers University. It is intended to be used to
test and evaluate innovative protocols in real-world settings
and it includes an OpenFlow-based network. The deployment
consists of an OpenFlow-compliant switch Pronto 3290 con-

Fig. 7. Topology of the ORBIT OpenFlow testbed.

nected to nine nodes. Out of the 9 nodes, 7 of them are
connected to one NetFPGA each. Each of the NetFPGA is
connected to the Pronto 3290 OpenFlow switch through four
3GbE connections. All of the 9 nodes are connected to the
Pronto 3290 OpenFlow switch and they are connected to a
control plane through which the nodes can be accessed through
telnet/ssh sessions by the experimenter. Figure 7 shows the
topology of the ORBIT OpenFlow testbed.

Similar testbeds have been deployed in Europe and Japan
as well. Ofelia is a project funded by the European Union
that provides an OpenFlow-based network with nodes in
Belgium, Switzerland, UK, Spain, Germany, Italy and Brazil
[121]. Also, the Dynamic Network System (DYNES) project
[122], funded by the National Science Foundation (NSF),
is exploring technologies such as OpenFlow to interconnect
campus, regional and backbone networks. Other future deploy-
ments also include the Network Development and Deployment
Initiative (NDDI) and the Open Science, Scholarship and
Services Exchange (OS3E) [122].

OpenFlow has also been deployed by several companies,
as seen in the keynote lectures of the 2012 Open Networking
Summit [123]. As an example, Google has deployed Open-
Flow in the inter-datacenter backbone network that carries all
the traffic between the different datacenters [124]. Currently,

14 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, ACCEPTED FOR PUBLICATION

this network is completely OpenFlow based. According to
the speaker, adopting OpenFlow has been the most significant
change in networking in the company [125].

By surveying OpenFlow-based applications and deploy-
ments, we have identified some challenges faced by
OpenFlow-based networks. We discuss these challenges next.

VII. PERFORMANCE OF OPENFLOW-BASED NETWORKS

We have surveyed different OpenFlow-based applications
and deployments. Next we mention several studies that have
designed experiments to evaluate the performance of Open-
Flow architectures. We also discuss publications that propose
alternatives to improve the performance of OpenFlow net-
works.

A. Measuring and modelling the performance of OpenFlow-
based networks

Jarschel et al. [126] model an OpenFlow controller as a
M/M/1 queuing system. This model allows obtaining results
regarding the total sojourn time of a packet through the system.
The model also captures the difference in terms of delay
between a packet that is processed by the switch and a packet
that must go to the controller. Also, the probability of dropping
a packet because the controller is under high load is studied.
The results show that the sojourn time depends largely on
processing speed of the OpenFlow controller. Also, the authors
are able to conclude that the processing time of the controller
lies between 220 and 245 µs. Another interesting result shows
that current controllers cannot handle a big number of flows
in 10Gbps links.

Bianco et al. [127] compare the performance of OpenFlow
switching, link layer Ethernet switching and network layer IP
routing. Experiments include using packets of different sizes
and comparing the results of single flows against multiple
flows. In all the experiments, OpenFlow achieves good results
in comparison to link layer Ethernet switching and network
layer IP routing.

Levin et al. [128] address the following question: “How
does distributed SDN state impact the performance of a
logically centralized control application?” [128]. The authors
argue that the SDN network control plane cannot be fully
physically centralized because responsiveness, reliability and
scalability issues arise. One possible solution is to have a
distributed control plane where a logically centralized control
plane operates. This design faces consistency challenges and
the authors study how much inconsistencies in the global
network view affect the performance of the network. The
authors compare two applications: one is ignorant to possible
inconsistencies and the other takes inconsistency into consid-
eration when operating. This study concludes that optimality is
significantly affected when inconsistencies are not considered
and that the robustness of an application is increased when it
is aware of the network state distribution.

Heller et al. [129] address two important questions regard-
ing reliability, scalability and performance. First, they analyze
how many controllers are needed in a network. Second, they
discuss where in the topology should these controllers go.
The authors introduce these questions as an important part

of the controller placement problem. Regarding the number of
controllers needed, the authors analyze the latency of different
topologies and they observe that one controller is often enough
to keep the latency at a reasonable rate. They also explain
that, in general, adding k controllers reduces the latency by
a factor of k. However, they also show examples where this
is not the case and more controllers are required. Regarding
the placement of controllers, they show how this decision can
also affect the latency of the network. They also show that
randomly selecting the location of the controller yields results
that are far from optimal.

Finally, the performance of OpenFlow has also been evalu-
ated in the optical networks domain. Liu et al. [130] evaluate
the performance of an OpenFlow-based wavelength path con-
trol in transparent optical networks. They study two different
approaches for lightpath setup (sequential and delayed) and
two ways of lightpath release (active and passive). The exper-
imental setup includes four OF-PXCs connected in a mesh
topology, with one OpenFlow switch and one client node
attached to each OF-PXC. A photonic cross-connect (PXC)
devices switches optical signals in an all-optical device. The
results show that a path between two clients (thus traversing
two switches) can be provisioned faster using the sequential
approach. Also, releasing a path can be done faster if the active
approach.

B. Improving the performance of OpenFlow-based networks

Several authors have also proposed modifications to Open-
Flow or alternative ways of using it to increase the scalability,
reliability or performance of the network.

Yeganeh et al. [131] propose Kandoo, a framework that
aims at reducing the number of events that are received at
the control plane of the network. To do this, two layers of
controllers are used. The upper layer maintains the network-
wide state. The bottom layer consists of several controllers
that do not know the network-wide state and that are not
interconnected. The bottom layer handles most of the events
and reduces the overhead at the upper layer. This framework
also increases the scalability of an OpenFlow network.

At least two studies have proposed additional ways to take
profit of a CPU being connected to the switch. Mogul et
al. [132] propose software defined counters. Recall that an
OpenFlow switch collects statistic data for each flow. The
authors explain that this data is stored in the switch using
application specific integrated circuits (ASIC). The propose
keeping and processing information in a CPU, where more
variable and flexible statistics could be processed. The study
does not include implementation or simulation results, but the
feasibility of software defined counters is analyzed theoreti-
cally.

Lu et al. [133] also propose combining ASIC and CPU
processing. The authors point out two limitations of current
switches: a limited size forwarding table and a limited size
packet buffer. They argue that a their approach relaxes these
limitations by using a CPU. A prototype is developed and
a 3.9Gb/s software forwarding throughput is achieved. Also,
large TCP traffic bursts are absorbed without packet losses.
The experimental setup consists of sending 50k bidirectional
TCP flows among four servers.

LARA et al.: NETWORK INNOVATION USING OPENFLOW: A SURVEY 15

Vanbever et al. [134] propose HotSwap, a system that
enables correct and efficient upgrades of SDN controllers.
The goal of HotSwap is to be able to change from one
controller to another (when upgrading the controller is needed)
without disrupting the network. They argue that stopping the
old controller and starting the new one introduces delays
and can also create errors in the network. HotSwap records
relevant messages between the switches and the controller and
bootstraps the new controller by replicating previous network
events. By the time the new controller starts operating, the
network state is the same as when the previous controller was
operating.

VIII. CHALLENGES OF OPENFLOW-BASED NETWORKS

OpenFlow deployments face several challenges that must
be taken into consideration, including security, availability,
scalability, reliability, expenditure and compatibility.

A. Security

One principal challenge of an OpenFlow-based network is
the dependence on the controller. The controller becomes a
component with a critical knowledge of the network and a
very attractive target for an attacker. Security measures must
be considered to ensure the availability of the controller. At the
same time, since this component has access to all the network,
it must be strongly protected from intruders.

The channel between the controller and the switches can
also be vulnerable. According to the OpenFlow specification,
Transport Layer Security (TLS) can be used to secure the
communication. However, this feature is not a requirement
and it is also acceptable to communicate the controller and
the switches using plain text traffic. TLS can then provide
security to the channel, but its usage depends on the design
of the network since it is not required.

The flow table is a component that could also present
security risks, although there are no published vulnerabilities
yet. It is possible to manage a flow table from two different
controllers, where one of them is a production hardware and
the other one is just experimental. Since the latter one will
be subject to lower security controls, it is important to make
sure that the consistency of the flow table remains and that a
malicious update coming from one controller will not tamper
other flow entries. Currently, the flow visor takes care of those
considerations but since OpenFlow is a recent protocol, this
needs to be kept in mind.

A centralized software-based controller can also have secu-
rity advantages. In a distributed network, many vulnerabilities
must be addressed in different protocols and different devices.
Having a software controller outside of the data plane can
simplify how security is enforced, as there is plenty of
expertise on securing servers through hardening instead of
securing network devices.

B. Availability

The dependence on the controller is also a challenge re-
garding availability. An OpenFlow-compliant switch is capa-
ble of forwarding packets using cached rules. However, the

communication with the controller is eventually needed for
any kind of modification of the rules. One advantage of a
traditional, distributed network architecture is that if a switch
fails, the availability of the network can be maintained. In
an OpenFlow network, the communication with the controller
must be ensured. As we mentioned in the previous subsection,
the controller becomes a single point of failure.

How to handle the delay needed to create new flows is also
a challenge. When an OpenFlow switch receives a packet that
does not match any rule in the flow table, then the first 200
bytes of the packet are sent to the controller. After this, the
controller can install a new forwarding rule. Therefore, the
delay to process the first packet is larger. If this delay is too
large, then the availability requirements of a network might
not be met.

C. Scalability

The controller can also become a bottleneck. If too many
packets must be forwarded to the controller, then performance
issues can occur. A well designed network should ensure that
the most part of the traffic can be handled by the switches
without needing to forward data to the controller. It is also
important to assess whether the controller will become a
bottleneck when the number of nodes grows. As we discussed
in Section VII, authors have addressed this challenge while
evaluating the performance of OpenFlow. In particular, Heller
et al. [129] show how a single controller is usually enough to
keep an acceptable latency. They also show that introducing
k controllers reduces the latency by k.

OpenFlow-based architectures also face two important scal-
ability challenges: a limited flow table size and hardware
constraints. First, the number of flows that can be contained
in the flow table is limited. It is still a challenge to handle
a very large number of flows using an OpenFlow-compliant
switch. Manipulating packets at the control plane is slow as
well. Therefore, end-to-end traffic control is hard to implement
if many different flows must be manipulated. Second, there
are hardware limitations on the speed at which flows can be
added. For these two reasons, it is still unclear if OpenFlow
deployments can be used to control the core of a network.
Currently, OpenFlow is being used at the edge of a network
instead.

D. Survivability

The dependency on the controller also creates reliability
issues. One example can be found in [45]. In this OpenFlow-
based network, a link failure is reported to the controller and
a new path is found. According to the results, the network
recovers successfully but not quickly enough. The authors
explain that the expected recovery time is not met because of
the time lost contacting the controller. A common requirement
by carriers is to achieve a network recovery in less than 50
seconds. In the study by [45], this goal is not met.

On the other hand, a centralized control also has advantages
regarding network recovery. In a distributed network, recov-
ering from a broken path can be a slow process. However, an
OpenFlow controller is network-aware and it can find the new
path faster.

16 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, ACCEPTED FOR PUBLICATION

A multipath proposal for OpenFlow addresses how to re-
cover faster from failures. This proposal includes a fast reroute
support, where backup flows can be installed in advance. If
the switch detects that a specific port has lost connectivity,
then the backup flow is installed. This is a proactive way of
dealing with link failures and it has the advantage that the
controller does not need to be contacted immediately after the
failure.

E. CAPEX and OPEX

It has been debated whether OpenFlow can reduce the
capital and operational expenses (CAPEX and OPEX) of an
organization.

OpenFlow adopters argue that by moving the complexity
to the software-based controller, network devices become
simpler and therefore, cheaper. This would reduce the CAPEX.
However, OpenFlow also has limitations and advanced hard-
ware is still required to operate a network. It does not seem
likely that network switches and routers will become simple
commodities in the short term. Also, ensuring the availability
of the control plane can increase the CAPEX. It is important
that the controller remains reachable even in case of a failure
in the data plane. Achieving this could increase the costs of a
deployment.

A similar trade-off occurs for OPEX. We have discussed
several studies that simplify the network configuration and
management. Certainly, OpenFlow can be used to reduce the
number of human based configuration tasks that are time
consuming and error prone. This reduces the OPEX. On the
other hand, moving the complexity of the network to the
software control plane requires work. Project administrators,
software developers, testers, debuggers and other costs are
examples of expenses that must be incurred in an OpenFlow-
based deployment. Therefore, it is not clear either whether
OpenFlow greatly reduces the OPEX.

F. Compatibility

Another important challenge for OpenFlow deployments is
that the network operating systems support specific versions of
the OpenFlow specification. Currently, most of them support
OpenFlow 1.0.0. Even though OpenFlow 1.1.0 has been
available for several months, the network operating systems
do not support specific features of the newer version. The
challenge is then to upgrade both the OpenFlow specification
and the software of each network operating system.

This compatibility issue also applies to the network devices,
whose software must be updated to meet the requirements
of new OpenFlow specifications. For instance, in the HP
ProCurve switches series, modifying the packet header fields
(for example: IPv4 destination address) in the switch hardware
is not supported. But, it is possible to do the same in
the switch software which is a slower path for processing.
Therefore, it is likely that switch vendors would fine tune their
hardware to support additional features in the switch hardware
to improve efficiency. This updating process must be taken in
consideration when new versions become available.

User developed applications face compatibility issues as
well. We have shown how there are significant differences

between specifications 1.0.0 and 1.1.0. Another example is
that version 0.8.9 became deprecated when version 1.0.0 was
available. Therefore, it is important to consider if applications
running under version 1.0.0 will still work on version 1.1.0
or if all affected developments must also be updated. This
scenario could occur again in further releases.

Finally, we believe that compatibility among controllers
should also be taken into consideration. Currently, multiple
network devices perform switching and routing in a standard-
ized way. However, if the devices are controlled by software-
based controllers, then standardization should be achieved too.
Controllers from different domains should use the same pro-
tocols to ensure that the communication is possible between
hosts in different domains.

Next we conclude the paper by discussing the future re-
search directions in OpenFlow-based networks.

IX. CONCLUSIONS AND FUTURE DIRECTIONS

OpenFlow is a promising technology for enabling advanced
functionality in programmable networks. This survey paper is,
in our opinion, the first one to discuss the capabilities, appli-
cation, deployments and challenges of SDN/OpenFlow-based
networks. We also explained and compared the OpenFlow
specifications. Below, we identify future research directions
in OpenFlow-based networks.

First of all, applications have been developed in areas such
as security, ease of configuration, availability, network and
data center virtualization, wireless applications and others.
Currently, a majority of the surveyed applications consist of
small, simple networks with some OpenFlow switches and
hosts. Only a small number of studies demonstrate their work
in a WAN. In [70], the authors emulated an OpenFlow-enabled
WAN, but this is an exception to the majority of studies.
Whether OpenFlow can be used in WAN deployments or not
is still an open question. Studies show that OpenFlow could be
used to control a WAN ([67], [69], [59]). However, scalability
and performance experiments have not been conducted yet.

Second, we observe that OpenFlow switches have been used
as a multi-layer network device. This technology was first
proposed to control Ethernet switches. However, OpenFlow
has also been used in routing ([75], [83], [94], [95]), IP address
validation ([44]) and MPLS control ([66], [67], [68], [69],
[70], [71], [72], [73]). This shows that OpenFlow can be used
at multiple layers. Future directions include tighter integration
of OpenFlow features with routers and MPLS switches to
reduce their complexity and cost.

Third, we find an open problem in the design of OpenFlow
architectures. So far, mostly all applications and deployments
use only one controller to manage all the switches. Distributed
architectures with more than one controller could be used
to address some of the challenges such as availability or
reliability [129]. In fact, a vast majority of networks contain
duplication as a means to ensure the availability of the system.
We believe that the possibility of communicating controllers
in the OpenFlow 1.2 specification ([19]) is an opportunity
to deploy this kind of architecture. Coordinating tasks across
multiple controllers and using them during normal and failover
conditions are tasks for future investigations.

LARA et al.: NETWORK INNOVATION USING OPENFLOW: A SURVEY 17

Fourth, we believe that most studies do not involve real
hardware but use virtualization tools such as Mininet [31] and
Open vSwitch [30]. Also, the number of hosts is small in
most of the applications. Scenarios such as Ethane [37], where
validation includes real hardware and up to 300 hosts are
not very common. Realistic hardware simulations would also
yield better results regarding the advantages and disadvantages
of using OpenFlow in real networks. Using testbeds such as
those described in this paper is a good way to strengthen the
validation of new applications.

Finally, it is important to mention that data center virtual-
ization is one of the active areas that has received a lot of
attention in the industry. The deployment of OpenFlow by
Google [123] in one of their backbone networks and active
participation of the Open Networking Foundation are good
examples of the interest of industry in OpenFlow. Integrating
OpenFlow into such large scale real-world applications is an
important future direction.

In conclusion, OpenFlow is one of the transformational
technologies to affect the networking vendor community in the
last decade and exhibits tremendous scope for future research
and deployment.

X. ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for
their valuable suggestions. The quality of the manuscript was
significantly improved based on their comments.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation
in campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38,
no. 2, pp. 69–74, 2008.

[2] OpenFlow Current Deployments. [Online]. Available: http://www.
openflow.org/wp/current-deployments/

[3] Open Networking Foundation. [Online]. Available: https://www.
opennetworking.org/

[4] A. Doria, J. H. Salim, R. Haas, H. Khosravi, W. Wang, L. Dong,
R. Gopal, and J. Halpern. Forwarding and Control Element
Separation (ForCES) Protocol Specification. [Online]. Available:
http://tools.ietf.org/html/rfc5810

[5] J. Zander and R. Forchheimer, “The SOFTNET project: a retrospect,”
in 8th European Conference on Electrotechnics, June 1988, pp. 343
–345.

[6] D. L. Tennenhouse and D. Wetherall, “Towards an active network
architecture,” SIGCOMM Comput. Commun. Rev., vol. 26, no. 2, pp.
5–17, April 1996.

[7] J. M. Smith and S. M. Nettles, “Active networking: one view of the
past, present, and future,” IEEE Trans. Syst. Man Cybern, C, Appl.
Rev., vol. 34, no. 1, pp. 4 –18, February 2004.

[8] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall, and
G. J. Minden, “A survey of active network research,” IEEE Commun.
Mag., vol. 35, no. 1, pp. 80 –86, January 1997.

[9] J. W. Lee, R. Francescangeli, J. Janak, S. Srinivasan, S. A. Baset,
H. Schulzrinne, Z. Despotovic, and W. Kellerer, “NetServ: Active
Networking 2.0,” in 2011 IEEE International Conference on Commu-
nications Workshops (ICC), June 2011, pp. 1 –6.

[10] T. V. Lakshman, T. Nandagopal, R. Ramjee, K. Sabnani, and T. Woo,
“The SoftRouter Architecture,” in Proc. ACM SIGCOMM Workshop
on Hot Topics in Networking, 2004.

[11] E. Keller and J. Rexford, “The ”Platform as a service” model for
networking,” in Proc. 2010 Internet Network Management Conference
on Research on Enterprise Networking, 2010.

[12] A. A. Lazar. Aurel A. Lazar home page. [Online]. Available:
http://www.ee.columbia.edu/∼aurel/networking.html

[13] J. Biswas, A. A. Lazar, J. F. Huard, K. S. Lim, S. Mahjoub, L. F. Pau,
M. Suzuki, S. Torstensson, W. Wang, and S. Weinstein, “The IEEE
P1520 Standards Initiative for Programmable Network Interfaces,” in
IEEE Commun. Mag., vol. 36, no. 10, 1998, pp. 64–70.

[14] Internet Engineering Task Force (IETF). Proposal: Software Defined
Networking Research Group (SDNRG). [Online]. Available: http:
//trac.tools.ietf.org/group/irtf/trac/wiki/sdnrg

[15] Internet Research Task Force (IRTF). Software Defined Networking
Research Group (SDNRG) - Charter. [Online]. Available: http:
//www.1-4-5.net/∼dmm/sdnrg/sdnrg.html

[16] Internet Engineering Task Force (IETF). Analysis of Comparisons
between OpenFlow and ForCES. [Online]. Available: http://tools.ietf.
org/html/draft-wang-forces-compare-openflow-forces-01

[17] OpenFlow Switch Specification, Version 1.0.0 (Wire Protocol 0x01).
[Online]. Available: http://www.openflow.org/documents/openflow-
spec-v1.0.0.pdf

[18] OpenFlow Switch Specification, Version 1.1.0 Implemented
(Wire Protocol 0x02). [Online]. Available: http://www.openflow.
org/documents/openflow-spec-v1.1.0.pdf

[19] OpenFlow Switch Specification, Version 1.2 (Wire Protocol 0x03).
[Online]. Available: https://www.opennetworking.org/images/stories/
downloads/openflow/openflow-spec-v1.2.pdf

[20] OpenFlow Switch Specification, Version 1.3.0 (Wire Protocol 0x04).
[Online]. Available: https://www.opennetworking.org/images/stories/
downloads/specification/openflow-spec-v1.3.0.pdf

[21] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown,
and S. Shenker, “NOX: towards an operating system for networks,”
SIGCOMM Comput. Commun. Rev., vol. 38, no. 3, pp. 105–110, July
2008.

[22] David Erickson. Beacon Home. [Online]. Available: https://openflow.
stanford.edu/display/Beacon/Home/

[23] Z. Cai, A. L. Cox, and T. S. Eugene. Maestro: A System for
Scalable OpenFlow Control. [Online]. Available: http://www.cs.rice.
edu/∼eugeneng/papers/TR10-11.pdf

[24] Floodlight. [Online]. Available: http://floodlight.openflowhub.org/
[25] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,

A. Story, and D. Walker, “Frenetic: a network programming language,”
in Proc. 16th ACM SIGPLAN International Conference on Functional
Programming, 2011.

[26] Trema, Full-Stack OpenFlow Framework in Ruby and C. [Online].
Available: http://trema.github.com/trema/

[27] Node.flow. [Online]. Available: https://github.com/dreamerslab/node.
flow

[28] Node.js. [Online]. Available: http://nodejs.org/
[29] B. Pfaff, J. Pettit, K. A. T. Koponen, M. Casado, and S. Shenker,

“Extending networking into the virtualization layer,” in Proc. ACM
SIGCOMM HotNets, 2009.

[30] Open vSwitch. [Online]. Available: http://openvswitch.org/
[31] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop:

rapid prototyping for software-defined networks,” in Proc. Ninth ACM
SIGCOMM Workshop on Hot Topics in Networks, 2010.

[32] NetFPGA. NetFPGA. [Online]. Available: http://netfpga.org/foswiki/
bin/view/NetFPGA/OneGig/LearnMore

[33] N. Handigol, B. Heller, V. Jeyakumar, D. Maziéres, and N. McKeown,
“Where is the debugger for my software-defined network?” in Proc.
First Workshop on Hot Topics in Software Defined Networks (HotSDN),
2012.

[34] NOX. [Online]. Available: http://www.noxrepo.org
[35] Maestro Platform. [Online]. Available: http://code.google.com/p/

maestro-platform/
[36] R. Sherwood, M. Chan, A. Covington, G. Gibb, M. Flajslik, N. Hand-

igol, T.-Y. Huang, P. Kazemian, M. Kobayashi, J. Naous, S. Seethara-
man, D. Underhill, T. Yabe, K.-K. Yap, Y. Yiakoumis, H. Zeng,
G. Appenzeller, R. Johari, N. McKeown, and G. Parulkar, “Carving
research slices out of your production networks with OpenFlow,”
SIGCOMM Comput. Commun. Rev., vol. 40, no. 1, pp. 129–130,
January 2010.

[37] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and
S. Shenker, “Ethane: taking control of the enterprise,” SIGCOMM
Comput. Commun. Rev., vol. 37, no. 4, pp. 1–12, October 2007.

[38] IETF. A Path Computation Element (PCE)-Based Architecture.
[Online]. Available: http://tools.ietf.org/html/rfc4655

[39] A. Giorgetti, F. Cugini, F. Paolucci, and P. Castoldi, “OpenFlow and
PCE architectures in Wavelength Switched Optical Networks,” in 16th
International Conference on Optical Network Design and Modeling
(ONDM), April 2012, pp. 1 –6.

[40] Energy Sciences Network (ESNet). On-Demand Secure Circuits and
Advance Reservation System. [Online]. Available: http://tools.ietf.org/
html/rfc4655

[41] V. Vokkarane. Progress report. [Online]. Available: http://www.cis.
umassd.edu/∼vvokkarane/common/reports/Y2Q1report.pdf

18 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, ACCEPTED FOR PUBLICATION

[42] K. Nichols, V. Jacobson, and L. Zhan. A Two-bit Differentiated
Services Architecture for the Internet. [Online]. Available: http:
//tools.ietf.org/html/rfc2638

[43] R. Braga, E. Mota, and A. Passito, “Lightweight DDoS flooding attack
detection using NOX/OpenFlow,” in 2010 IEEE 35th Conference on
Local Computer Networks (LCN), October 2010.

[44] G. Yao, J. Bi, and P. Xiao, “Source address validation solution with
OpenFlow/NOX architecture,” in 19th IEEE International Conference
on Network Protocols (ICNP), 2011.

[45] D. Staessens, S. Sharma, D. Colle, M. Pickavet, and P. Demeester,
“Software defined networking: Meeting carrier grade requirements,”
in 18th IEEE Workshop on Local Metropolitan Area Networks (LAN-
MAN), 2011.

[46] N. Handigol, S. Seetharaman, M. Flajslik, N. McKeown, and R. Johari,
“Plug-n-Serve: Load-balancing web traffic using Open-Flow,” 2009.

[47] J. Suh, H. Choi, W. Yoon, T. You, T. Kwon, and Y. Choi, “Imple-
mentation of a Content-oriented Networking Architecture (CONA): A
Focus on DDoS Countermeasure,” in European NetFPGA Developers
Workshop, 2010.

[48] Y. Chu, M. Tseng, Y. Chen, Y. Chou, and Y. Chen, “A novel design
for future on-demand service and security,” in 12th IEEE International
Conference on Communication Technology (ICCT), 2010.

[49] X. Liu, H. Xue, X. Feng, and Y. Dai, “Design of the multi-level security
network switch system which restricts covert channel,” in IEEE 3rd
International Conference on Communication Software and Networks
(ICCSN), 2011.

[50] J. H. Jafarian, E. Al-Shaer, and Q. Duan, “OpenFlow random host
mutation: transparent moving target defense using software defined
networking,” in Proc. First Workshop on Hot Topics in Software
Defined Networks (HotSDN), 2012.

[51] S. Gutz, A. Story, C. Schlesinger, and N. Foster, “Splendid isolation:
a slice abstraction for software-defined networks,” in Proc. First
Workshop on Hot Topics in Software Defined Networks (HotSDN),
2012.

[52] Y. Yamasaki, Y. Miyamoto, J. Yamato, H. Goto, and H. Sone, “Flexible
Access Management System for Campus VLAN Based on OpenFlow,”
in IEEE/IPSJ 11th International Symposium on Applications and the
Internet (SAINT), 2011.

[53] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker,
“Abstractions for network update,” in ACM SIGCOMM, 2012.

[54] M. Reitblatt, N. Foster, J. Rexford, and D. Walker, “Consistent updates
for software defined networks: change you can believe in!” in Proc.
10th ACM Workshop on Hot Topics in Networks, 2011.

[55] N. Katta, J. Rexford, and D. Walker, “Incremental consistent updates,”
in ACM SIGCOMM HotSDN Workshop, 2013.

[56] R. McGeer, “A safe, efficient update protocol for OpenFlow networks,”
in Proc. First Workshop on Hot Topics in Software Defined Networks
(HotSDN), 2012.

[57] S. Ghorbani and M. Caesar, “Walk the line: consistent network updates
with bandwidth guarantees,” in Proc. First Workshop on Hot Topics in
Software Defined Networks (HotSDN), 2012.

[58] J. Luo, J. Pettit, M. Casado, J. Lockwood, and N. McKeown, “Pro-
totyping Fast, Simple, Secure Switches for Ethane,” in 15th Annual
IEEE Symposium on High-Performance Interconnects, 2007.

[59] D. M. F. Mattos, N. C. Fernandes, V. T. da Costa, L. P. Cardoso,
M. E. M. Campista, L. H. M. K. Costa, and O. Duarte, “OMNI: Open-
Flow MaNagement Infrastructure,” in 2011 International Conference
on the Network of the Future (NOF), 2011.

[60] G. Gibb, H. Zeng, and N. McKeown, “Initial thoughts on custom
network processing via waypoint services,” in 3rd Workshop on In-
frastructures for Software/Hardware Co-Design, 2011.

[61] A. Voellmy, H. Kim, and N. Feamster, “Procera: a language for high-
level reactive network control,” in Proc. First Workshop on Hot Topics
in Software Defined Networks (HotSDN), 2012.

[62] A. D. Ferguson, A. Guha, C. Liang, R. Fonseca, and S. Krishnamurthi,
“Hierarchical policies for software defined networks,” in Proc. First
Workshop on Hot Topics in Software Defined Networks (HotSDN),
2012.

[63] Y. Nakagawa, K. Hyoudou, and T. Shimizu, “A management method
of IP multicast in overlay networks using OpenFlow,” in Proc. First
Workshop on Hot Topics in Software Defined Networks (HotSDN),
2012.

[64] G. Gibb, H. Zeng, and N. McKeown, “Outsourcing network func-
tionality,” in Proc. First Workshop on Hot Topics in Software Defined
Networks (HotSDN), 2012.

[65] R. Raghavendra, J. Lobo, and K.-W. Lee, “Dynamic graph query
primitives for SDN-based cloudnetwork management,” in Proc. First

Workshop on Hot Topics in Software Defined Networks (HotSDN),
2012.

[66] D. Simeonidou, R. Nejabati, and S. Azodolmolky, “Enabling the future
optical Internet with OpenFlow: A paradigm shift in providing intelli-
gent optical network services,” in 2011 13th International Conference
on Transparent Optical Networks (ICTON), 2011.

[67] S. Das, G. Parulkar, and N. McKeown, “Unifying Packet and Circuit
Switched Networks,” in GLOBECOM Workshops, 2009 IEEE, 2009.

[68] S. Das, G. Parulkar, N. McKeown, P. Singh, D. Getachew, and L. Ong,
“Packet and circuit network convergence with OpenFlow,” in 2010
Conference on (OFC/NFOEC) Optical Fiber Communication (OFC),
collocated National Fiber Optic Engineers Conference, 2010.

[69] S. Das, Y. Yiakoumis, G. Parulkar, N. McKeown, P. Singh,
D. Getachew, and P. D. Desai, “Application-aware aggregation and
traffic engineering in a converged packet-circuit network,” in Optical
Fiber Communication Conference and Exposition (OFC/NFOEC) and
the National Fiber Optic Engineers Conference, 2011.

[70] S. Das, A. R. Sharafat, G. Parulkar, and N. McKeown, “MPLS
with a simple OPEN control plane,” in Optical Fiber Communication
Conference and Exposition (OFC/NFOEC), 2011 and the National
Fiber Optic Engineers Conference, 2011.

[71] O. El Ferkouss, S. Correia, R. Ben Ali, Y. Lemieux, M. Julien,
M. Tatipamula, and O. Cherkaoui, “On the Flexibility of MPLS
Applications over an OpenFlow-Enabled Network,” in 2011 IEEE
Global Telecommunications Conference (GLOBECOM 2011), 2011.

[72] J. Kempf, S. Whyte, J. Ellithorpe, P. Kazemian, M. Haitjema, N. Be-
heshti, S. Stuart, and H. Green, “OpenFlow MPLS and the open source
label switched router,” in Proc. 23rd International Teletraffic Congress,
2011.

[73] A. R. Sharafat, S. Das, G. Parulkar, and N. McKeown, “MPLS-TE
and MPLS VPNS with OpenFlow,” in Proc. ACM SIGCOMM 2011
Conference, 2011.

[74] N. Handigol, S. Seetharaman, M. Flajslik, A. Gember, N. McKeown,
G. Parulkar, A. Akella, N. Feamster, R. Clark, A. Krishnamurthy,
V. Brajkovic, and T. Anderson, “Aster*x: Load-Balancing Web Traffic
over Wide-Area Networks,” 2011.

[75] R. Wang, D. Butnariu, and J. Rexford, “OpenFlow-Based Server Load
Balancing Gone Wild,” in Proc. 11th USENIX conference on Hot
topics in management of internet, cloud, and enterprise networks and
services, 2011.

[76] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester,
“Enabling fast failure recovery in OpenFlow networks,” in 8th Inter-
national Workshop on the Design of Reliable Communication Networks
(DRCN), 2011.

[77] A. Khurshid, W. Zhou, M. Caesar, and P. B. Godfrey, “VeriFlow:
verifying network-wide invariants in real time,” in Proc. First Workshop
on Hot Topics in Software Defined Networks (HotSDN), 2012.

[78] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu, “A
security enforcement kernel for OpenFlow networks,” in Proc. First
Workshop on Hot Topics in Software Defined Networks (HotSDN),
2012.

[79] S. Azodolmolky, R. Nejabati, E. Escalona, R. Jayakumar, N. Efstathiou,
and D. Simeonidou, “Integrated OpenFlow–GMPLS control plane: an
overlay model for software defined packet over optical networks,” Opt.
Express, vol. 19, no. 26, pp. B421–B428, December 2011.

[80] S. Das, G. Parulkar, and N. McKeown, “Why OpenFlow/SDN Can
Succeed Where GMPLS Failed,” in European Conference and Exhibi-
tion on Optical Communication. Optical Society of America, 2012,
p. Tu.1.D.1.

[81] O. Baldonado. SDN, OpenFlow, and next-
generation data center networks. [Online]. Avail-
able: http://www.eetimes.com/design/embedded/4371543/SDN--
OpenFlow--and-next-generation-data-center-networks

[82] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vah-
dat, “Hedera: dynamic flow scheduling for data center networks,”
in Proc. 7th USENIX conference on Networked systems design and
implementation, 2010.

[83] C. Rotsos, R. Mortier, A. Madhavapeddy, B. Singh, and A. W. Moore,
“Cost, performance and flexibility in OpenFlow: Pick three,” Workshop
on Software Defined Networks Co-located with the IEEE International
Conference on Communications (ICC), 2012. [Online]. Available:
http://www.cs.nott.ac.uk/∼rmm/papers/pdf/iccsdn12-mirageof.pdf

[84] R. Bennesby, P. Fonseca, E. Mota, and A. Passito, “An inter-as
routing component for software-defined networks,” in IEEE Network
Operations and Management Symposium (NOMS), 2012.

[85] K.-K. Yap, M. Kobayashi, R. Sherwood, T.-Y. Huang, M. Chan,
N. Handigol, and N. McKeown, “OpenRoads: empowering research in

LARA et al.: NETWORK INNOVATION USING OPENFLOW: A SURVEY 19

mobile networks,” SIGCOMM Comput. Commun. Rev., vol. 40, no. 1,
pp. 125–126, January 2010.

[86] OpenFlow Wireless. [Online]. Available: http://www.openflow.org/wk/
index.php/OpenFlow Wireless

[87] K.-K. Yap, M. Kobayashi, D. Underhill, S. Seetharaman, P. Kazemian,
and N. McKeown, “The Stanford OpenRoads Deployment,” in Proc.
4th ACM International Workshop on Experimental Evaluation and
Characterization, 2009.

[88] K.-K. Yap, S. Katti, G. Parulkar, and N. McKeown, “Delivering
capacity for the mobile internet by stitching together networks,” in
Proc. 2010 ACM Workshop on Wireless of the Students, by the Students,
for the Students, 2010.

[89] K.-K. Yap, R. Sherwood, M. Kobayashi, T.-Y. Huang, M. Chan,
N. Handigol, N. McKeown, and G. Parulkar, “Blueprint for intro-
ducing innovation into wireless mobile networks,” in Proc. Second
ACM SIGCOMM Workshop on Virtualized Infrastructure Systems and
Architectures, 2010.

[90] T.-Y. Huang, K.-K. Yap, B. Dodson, M. S. Lam, and N. McKeown,
“PhoneNet: a phone-to-phone network for group communication within
an administrative domain,” in Proc. Second ACM SIGCOMM Workshop
on Networking, Systems, and Applications on Mobile Handhelds, 2010.

[91] M. Bansal, J. Mehlman, S. Katti, and P. Levis, “OpenRadio: a pro-
grammable wireless dataplane,” in Proc. First Workshop on Hot Topics
in Software Defined Networks (HotSDN), 2012.

[92] L. Suresh, J. Schulz-Zander, R. Merz, A. Feldmann, and T. Vazao,
“Towards programmable enterprise WLANS with Odin,” in Proc. First
Workshop on Hot Topics in Software Defined Networks (HotSDN),
2012.

[93] L. Lu, Y. Xiao, and H. Du, “OpenFlow control for cooperating AQM
scheme,” in 2010 IEEE 10th International Conference on Signal
Processing (ICSP), 2010.

[94] K.-K. Yap, T.-Y. Huang, B. Dodson, M. S. Lam, and N. McKeown,
“Towards software-friendly networks,” in Proc. First ACM Asia-Pacific
Workshop on Systems, 2010.

[95] M. R. Nascimento, C. E. Rothenberg, M. R. Salvador, and M. F.
Magalhães, “QuagFlow: partnering Quagga with OpenFlow,” in Proc.
ACM SIGCOMM 2010 Conference, 2010.

[96] M. R. Nascimento, C. E. Rothenberg, M. R. Salvador, C. N. A. Corrêa,
S. C. de Lucena, and M. F. Magalhães, “Virtual routers as a service: the
RouteFlow approach leveraging software-defined networks,” in Proc.
6th International Conference on Future Internet Technologies, 2011.

[97] C. E. Rothenberg, M. R. Nascimento, M. R. Salvador, C. N. A.
Corrêa, S. Cunha de Lucena, and R. Raszuk, “Revisiting routing control
platforms with the eyes and muscles of software-defined networking,”
in Proc. First Workshop on Hot Topics in Software Defined Networks
(HotSDN), 2012.

[98] H. E. Egilmez, B. Gorkemli, A. M. Tekalp, and S. Civanlar, “Scalable
video streaming over OpenFlow networks: An optimization framework
for QoS routing,” in 18th IEEE International Conference on Image
Processing (ICIP), 2011.

[99] OpenFlow Stanford Deployment. [Online]. Available: http://www.
openflow.org/wp/stanford-deployment/

[100] Clemson OpenFlow Agregate. [Online]. Available: http://groups.geni.
net/geni/wiki/GeniAggregate/ClemsonOpenFlow

[101] Georgia Tech OpenFlow Agregate. [Online]. Available: http://groups.
geni.net/geni/wiki/GeniAggregate/GeorgiaTechOpenFlow

[102] Indiana OpenFlow Agregate. [Online]. Available: http://groups.geni.
net/geni/wiki/GeniAggregate/IndianaOpenFlow

[103] KSU Lab OpenFlow Aggregate. [Online]. Available: http://groups.
geni.net/geni/wiki/GeniAggregate/KansasStateOpenFlow

[104] Rutgers OpenFlow Agregate. [Online]. Available: http://groups.geni.
net/geni/wiki/GeniAggregate/RutgersOpenFlow

[105] University of Washington OpenFlow Agregate. [Online]. Available:
http://groups.geni.net/geni/wiki/GeniAggregate/WashingtonOpenFlow

[106] Winsconsin OpenFlow Agregate. [Online]. Available: http://groups.
geni.net/geni/wiki/GeniAggregate/WisconsinOpenFlow

[107] GENI, Exploring networks of the future. [Online]. Available:
http://www.geni.net/

[108] Internet2. [Online]. Available: www.internet2.edu
[109] National LambdaRail. [Online]. Available: http://www.nlr.net
[110] Testbed Networks: Provided by NLR. [Online]. Available: www.nlr.

net/testbeds.php
[111] GENI. GENI OpenFlow Backbone Deployment at Internet2. [Online].

Available: http://groups.geni.net/geni/wiki/OFI2
[112] United States Unified Community Anchor Network. United States

Unified Community Anchor Network. [Online]. Available: http:
//www.usucan.org/about

[113] Internet2. Nation’s First 100G Open, Nationwide, Software-Defined
Network Launches for Education, Research, Industry and Innovators.
[Online]. Available: http://internet2.edu/news/pr/2012.10.01.nations-
first-100g-national-scale-network-launches.html

[114] Internet2. Internet2 Mailing List Service. [Online]. Available:
https://lists.internet2.edu/sympa/arc/i2-news/2012-07/msg00002.html

[115] Energy Science Network. Energy Science Network. [Online].
Available: www.es.net

[116] Advanced Networking Initiative (ANI). [Online]. Available: http:
//www.es.net/RandD/advanced-networking-initiative/

[117] IP8800 OpenFlow Networking. [Online]. Available: http://support.
necam.com/pflow/legacy/ip8800/

[118] ESNet. 100G Testbed. [Online]. Available: http://www.es.net/RandD/
100g-testbed/

[119] Energy Sciences Network ESNet. Proposal Process. [Online].
Available: http://www.es.net/RandD/100g-testbed/proposal-process

[120] OpenFlow Experimentation in ORBIT. [Online]. Available: http:
//www.orbit-lab.org/wiki/Documentation/OpenFlow

[121] Ofelia. [Online]. Available: http://www.fp7-ofelia.eu/news-and-events/
press-releases/ofelia-openflow-facility-now-open-for-experiments/

[122] MRI-R2 Consortium: Development of Dynamic Network System
(DYNES). [Online]. Available: http://www.internet2.edu/ion/dynes.
html

[123] Open Networking Summit 2012 Program. [Online]. Available:
http://opennetsummit.org/

[124] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hlzle, S.
Stuart, and A. Vahdat, B4: Experience with a Globally-Deployed
Software Defined WAN, in Proceedings of the ACM SIGCOMM
2013 Conference, 2013.

[125] S. Levy. Going With the Flow: Google′s Secret Switch to the
Next Wave of Networking. [Online]. Available: http://www.wired.
com/wiredenterprise/2012/04/going-with-the-flow-google/all/1

[126] M. Jarschel, S. Oechsner, D. Schlosser, R. Pries, S. Goll, and P. Tran-
Gia, “Modeling and performance evaluation of an OpenFlow architec-
ture,” in 23rd International Teletraffic Congress (ITC), 2011.

[127] A. Bianco, R. Birke, L. Giraudo, and M. Palacin, “OpenFlow Switch-
ing: Data Plane Performance,” in IEEE International Conference on
Communications (ICC), 2010.

[128] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feldmann,
“Logically centralized?: state distribution trade-offs in software defined
networks,” in Proc. First Workshop on Hot Topics in Software Defined
Networks (HotSDN), 2012.

[129] B. Heller, R. Sherwood, and N. McKeown, “The controller placement
problem,” SIGCOMM Comput. Commun. Rev., vol. 42, no. 4, pp. 473–
478, Sep. 2012.

[130] L. Liu, T. Tsuritani, I. Morita, H. Guo, and J. Wu, “Experimental
validation and performance evaluation of OpenFlow-based wavelength
path control in transparent optical networks,” Opt. Express, vol. 19,
no. 27, pp. 26 578–26 578, Sep. 2012.

[131] S. Hassas Yeganeh and Y. Ganjali, “Kandoo: a framework for efficient
and scalable offloading of control applications,” in Proc. First Work-
shop on Hot Topics in Software Defined Networks (HotSDN), 2012.

[132] J. C. Mogul and P. Congdon, “Hey, you darned counters!: get off my
ASIC!” in Proc. First Workshop on Hot Topics in Software Defined
Networks (HotSDN), 2012.

[133] G. Lu, R. Miao, Y. Xiong, and C. Guo, “Using CPU as a traffic co-
processing unit in commodity switches,” in Proc. First Workshop on
Hot Topics in Software Defined Networks (HotSDN), 2012.

[134] L. Vanbever, J. Reich, T. Benson, N. Foster, and J. Rexford, “HotSwap:
Correct and efficient controller upgrades for Software-Defined Net-
works,” in ACM SIGCOMM HotSDN Workshop, 2013.

Adrian Lara received his B.S. and M.Sc. in Com-
puter Science from the University of Costa Rica in
2006 and 2011. He is currently a doctoral student
under the supervision of Dr. Byrav Ramamurthy at
the University of Nebraska-Lincoln. His research
interests include Software Defined Networking using
OpenFlow, big data networks and network secu-
rity. Specifically, he looks at network virtualization,
multi-layer bandwidth provisioning and secure au-
thentication using OpenFlow.

20 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, ACCEPTED FOR PUBLICATION

Anisha Kolasani earned her B. Tech. in Information
Technology from the Jawaharlal Nehru Technologi-
cal University in Hyderabad, India in 2010. In 2012,
she received her M. Sc. in Computer Science and
Engineering from University of Nebraska-Lincoln
under the supervision of Dr. Byrav Ramamurthy. She
focused on dynamic network traffic isolation through
OpenFlow. She is currently working for Intel on Sort
Test Technology Development.

Byrav Ramamurthy is currently a Professor in
the Department of Computer Science and Engineer-
ing at the University of Nebraska-Lincoln (UNL).
He is the author of the book ”Design of Optical
WDM Networks - LAN, MAN and WAN Architec-
tures” and a co-author of the book ”Secure Group
Communications over Data Networks” published by
Kluwer Academic Publishers/Springer in 2000 and
2004 respectively. He served as the Chair of the
IEEE Communication Society’s Optical Networking
Technical Committee (ONTC) during 2009-2011.

He served as the IEEE INFOCOM 2011 TPC Co-Chair. His research areas
include optical and wireless networks, peer-to-peer networks for multimedia
streaming, network security and telecommunications. His research work is
supported by the U.S. National Science Foundation, U.S. Department of
Energy, U.S. Department of Agriculture, NASA, AT&T Corporation, Agilent
Tech., Ciena, HP and OPNET Inc.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus MediaWorks settings for Acrobat Distiller 8)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

